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Closed-form and finite-element solutions are presented for the
thermoelastic behavior of laminated composite shells. The material
of each layer is assumed to be thermoelastically orthotropic and bi-
modular, i.e., having different properties depending upon whether
the fiber-direction normal strain is tensile or compressive. The
formulations are based on the thermoelastic gemeralization of Dong
and Teo's laminated shell theory, which includes thickness shear
deformations. The finite element used here has five degrees of
freedom per node (three displacements and two bending slopes). ‘j
Mumerical results are presemted for deflections and the positions |
of the neutral surfaces associated with bending along both coordi-
nate directions. The closed-form,and finite-element results are - ¥

found to be in good agz;eement.

INTRODUCTION 4

As the field of composite-material mechanics becomes more highly developed,
increasing attention is being given to the development of more realistic r
models of actual material behavior and to the application of these models to

thermostructural analysis of composite-material structural elements such as

e
plates and shells. Certain fiber-reinforced composite materials, especially :!'
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those with very soft matrices, exhibit the interesting phenomenon of having
quite different elastic properties when loaded along the fiber direction in
tension as contrasted to compression. This was demonstrated for cord-rubber
composites by Clark [1] and Patel et al. [2]. The first attempt to formulate
a theory of elastic behavior of such materials was due to Ambartsumyan [3],
and a comprehensive theory cons%stent with experimental results was introduced
in [4] and further discussed in [5].

Most of the thermoelastic analyses of bimodulus-material structural
elements [6-12] have been limited to isotropic bimodulus materials. However,
in a recently developed theory of micromechanics of fiber-reinforced materials
with soft matrices [13], it was shown that the thermal-expansion coefficients,
as well as the elastic properties, should depend upon the sign of the fiber-
direction strain. Unfortunately, there does not appear to be any appropriate
experimental data available to date to confirm this conclusion and to provide
quantitative values for the thermal-expansion coefficients. To the best of
the knowledge of the current investigators,'the only analysis to provide for
the bimodular effect on thermal expansion js a very recent thermoelastic
analysis of thick laminated plates [14].

There have been a few thermoelastic analyses of shells laminated of
ordinary composite materials. Stavsky énd Ssmolash [15] considered thin,
laminated, orthotropic shells using Love's first-approximation shell theory,
and Pao [16] treated similar shells using Flugge's higher-order thin-shell
theory. Recently, Padovan and Lestingi [17] analyzed heated anisotropic
shells including thickness-shear deformation.

A number of analyses of various kinds of bimodulus shells have appeared

in the literature; ten of them were reviewed in [18]. However, in every




instance they treated only thin shells subjected to mechanical loading only.
The present analysis is believed to be the first analysis of bimodulus

shells to include either thermal loading or thickness-shear deformation.

The theory used is a generalized first-approximation thermoelastic shell

theory which can be reduced by means of tracer coefficients to various

simpler theories.

GOVERNING EQUATIONS

Let x and y denote the axial and circumferential position coordinates
measured on the shell middle surface, and z the outward normal position
coordinate (see Figure 1).

The displacement field at an arbitrary location (x,y,z) is given by

U(X,,Y.Z) = U(X,Y) + ZBx(xo.Y)
V(x,y,2z) = v(x,y) + zsy(x.y) (1)
W(x,y,2) = w(x,y)

Here, u,v,w are the middle-surface displacements, and Bx and By are the
bending slopes.
The strain-displacement relations for small deflections can be written

as
€y = €] * 2 (121,2,4,5,6) (2)

Here, ¢, are the engineering-strain components at an arbitrary location
(Xs¥52)s eg are the engineering-strain components on the middle surface
(x,y,0), and xy are the curvature changes. The notation of classical com-

posite-material mechanics is used, with 1 and 2 denoting normal action in




directions x and y, respectively, and 6 denoting shear action with respect

to x,y axes. Now

82 = U, * Eg = V,y + (“/R) s Eg = uoy + v,

X X

0
cu = By tWay - (C/RIV e = B W,

X
(3)
KT Bex 0 K27 By, o ke T By T By
Ky 5 Kg = 0 + (CZ/ZR)(VQx-UDy)

Here, R is the radius of the middle-surface, the Ci are shell-theory tracers
to be discussed later, and ( ),, = a( )/ax.

Considering the shell to consist of either a single orthotropic layer
or to be a cross-ply laminate (one having all layers oriented at either 0°
or 90° with respect to the cylinder axis), the thermoelastic version of

generalized Hooke's law may be written as follows for each layer:

(01 ) I Uie Yoke O 0 0 'el ) “lkLT‘
92 Qoke Loke O 0 0 €2 = GppT

oy ¢ 0 0 Qe O 0 ]S & y (4)
o5 0 0 0 0o, O es

L 96 i 0 0 0 0 Q“"h L €6 J

Here, o4 are the stress components, Qijkl are the plane-stress-reduced
stiffnesses, L) are the thermal expansion coefficients, and T is the
temperature measured from the strain-free temperature. Subscript k=1 for
fiber-direction tension and 2 for compression, and subscript £ denotes the
layer number.

The stress resultants and stress couples are defined in the customary




way for a first-approximation shell theory as
h/2
(M) = [ 2oy a2 (5)
-h/2

where h = total laminate thickness. Similarly, thermoelastic stress resul-

tants and stress couples are defined as

. h/2
WD) = [ Loy, @2 (6)
‘ -h/2
i where
Eijke * Qijklgjkt (no sum on k&) (7)

Since thickness-shear deformation is included, the shear stress re-
; : sultants are introduced
h § h/2
i (Q2,Q;) = [ (Omos)dz (8)
-h/2

Substituting Equations (4) and (6) into Equations (5) and (8), one

obtains the following shell constitutive relations

(N + N] ! [a, a, 0 o o 8y By, 0 (9
N, + N Az Az 0 0 0 By, By 0 ||l
Ng 0 0 Agg 0 0 0 0 Bgg||el
{ % . 0 0 0 S, O 0 0 0O S )
R 0 0 0 0 S 0 0 0f)es|
My + M 83 B 0 0 0 Dy 0, 0] |e
0 o 0|«
0 Ogs| L *s




Here, Aij = {nplane stiffness, B1j = {nplane-bending coupling stiffness,
Dij = bending stiffness,"sij = thickness shear stiffness, defined by
h/2

(Agygp0yy) = [ Quzaz?lgy a2 (1.421,2,6)
nr2
w2
sij = sz Qij dz (1,5=4,5)
-h/2

(Derivations of Aij’ Bij’ Dij' NI, and ME are carried out in detail for a
laminated bimodulus shell in Appendix A.)
The shell equilibrium equations, in the absence of body forces and

body moments, can be written as

Nl,x + Ns,y - (C2/2R)M6'y =0

Ns,x + Nz,y + (CIIR)Q2 + (CZ/ZR)Ms,x =0

0 * Q- (N/R) =P

"1.x + Ms’y =Q, Ms’x + Mz,y =Q

where P is the normal pressure.

(10)

(m

If the shell-theory tracer C, is set equal to unity and C, set equal to

zero, the theory presented here can be considered to be the thermoelastic

version of the shear-deformation shell theory of laminated, orthotropic,

circular cylindrical shells presented by Dong and Tso [19]. This theory is

the shear-deformable, laminated, orthotropic version of the well-known Love

first-approximation shell theory [20], as modified by Reissner [21]; see
also chap. 2 of [22].




If the shell-theory tracers are set equal to other values as specified
in Table 1, the theory represents the shear-deformable, laminated orthotropic
version of the Sanders "best" first-approximation theory [23], Loo's approxi-

mate theory [24], Morley's shallow-shell theory [25], and Donnell's very-

shallow-shell theory [26]. It is interesting to note that when generalized
to include shear deformation, one cannot distinguish between Love's first-
approximation theory and Loo's theory and also between Morley's and Donnell's
shallow-shell theories.
Substituting Equations (3) and (9) into Equations (11), we obtain the

following operator equation

[L1(s} = {f} (12)
where

{8} = {U.v.w.sx,ey}T

Now [L] is the symmetric matrix of the following differential operators:

2 122 2
L1y = Apidy + (Age - CoBgs + 7 C2Dss)d)

1 =2
Liz = (A12*Age - 7 C2Dee)d,d,

, 2 1 2
Lia = (Ar/R), 5 Ly, = Byd) + (Bgg -3 CzDss)dy

1
Lis = (Bi2+Bgg -3 czDss)dxdy

= 1 a2 2 2 =2
L2z = (Age + C2Bge +7 C2Des)d) + Az2d, = CiSus
-l -
L2s = (R A2 #CiSuuldy 5 Loy = (312*365*% C20¢6)d,d,
= 2 2 - (13)
L2s = (Bss"% C2Dge)d, *+ B2od + CiSuy

2
Ly = - Sssd: - Suud, + (Az2/R?) ﬂ

- -1
L3y = (R 131z'sss)dx i Las = (R 7Bz - Suu)d,




2 2
Luy = D1ady + Dggdy = Sss 3 Lus = (D12+Dgg)d, d,
2 2 ) . ) .
Lss = Degdy + D220, - Suy 3 Cy=Cy/R 5 d =a( )ax, etc.

Also the components of the generalized thermal-force vector {f} are:

T . « NI . a b - (NV
foeN & f=N 5 e - (N/R)
T e oy (14)
foxMx 3 =M,

In view of the assumed linearity of the displacements with z, it is
consistent to assume that the temperature distribution is also linear with z:

T(x,y,2) = To(xey) + 2T, (x,y) (15)

CRITERIA FOR HOMOGENEITY ALONG MIDDLE SURFACE
In deriving Equations (12), we tacitly assumed that the laminate stiff-
nesses (Aij’Bij’Dij’Sij) are all independent of coordinates (x,y) on the
middle surface. However, in view of the bimodulus nature of the materials
comprising the laminate, these stiffnésses depend upon the fiber-direction
neutral-surface positions associated with the respective layers (i.e., z,

X
for a single layer with axially oriented fibers, and Z.x and zny for a cross-
ply laminate).

Thus, for layers having the fibers oriented axially, the associated
fiber-direction neutral-surface position is determined by

0
€1 = €] +anl<1 =0

or
3-0 2 - =
Z . €,/ u'x/Bx,x constant (16)
Similarly, for layers having the fibers oriented circumferentially
€2 * eg * ket 0
or

2 - 0 - -1 =
Zny €,/x2 (v.y-PR w)/By’y constant (17)




}'_‘k{%\f\}‘&g"‘u ok g Ui !4=-i-2. K .L‘:."'.u ~ a

E2Y
W
B e D T e LR

“. _'-.'sz;i;,,‘,‘ d
,4:“_", - : . .A:

L3

CLOSED-FORM SOLUTION

A solution is sought which satisfies the governing operator equation,
Equation (12), the subsidiary relations, Equations (16) and (17), and the
appropriate boundary conditions.

A closed-form solution has been found for the following conditions:

Loading (sinusoidally distributed):

P=P sinaxsingy , T. =T sinax sin gy
0 0 0 (18)
T, =T, sinaxsingy , a= mx/a , 8= =y/b
Here a and b are the dimensions of the shell in the respective axial and
circumferential directions (see Fig. 1).
Boundary Conditions (freely supported):
NI(OSY) = Nl(a9.y) = Ml(oty) = Ml(av.Y) = 0
w (0,y) = w(a,y) =v(0,y) =v(a,y) =0
Nz(X,O) = Nz(Xsb) = Mz(xlo) = Mz(X,b) = 0 (19)
w (x,0) = w(x,b) = u(x,0) = u(x,b) =0
By(o’.Y) = By(at.y) = Bx(x’o) = Bx(xsb) =0
Under these conditions, the solution to Equation (12) is of the form
u(x,y) = U cos ax sin gy
v(x,y) = V sin ax cos gy
w(x,y) = W sin ax sin gy (20)

W
sx(x.y) = X co§ ax sin gy
Y

ey(x,y) = ¥ sin ax cos gy

; % s . o . .
B . . .
) Y SRR
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Substitution of Equations (20) into Equation (12) leads to the follow-
ing nonhomogeneous algebraic system:
[Cl{a} = (F} (21)
where
OERRA N R

T (22)
{F} = {Fl,Fz.F3,F4,F5}'

The quantities F,. and the coefficients Cpg Of the matrix [C] are not
presented here, for brevity.

For a given set a, 8, Po’ R, F; and either single-layer or cross-ply
construction, one needs to solve the 5x5 matrix Equation (21) for the vector
{4} of amplitudes of the generalized displacements, subject to subsidiary
conditions (16) and (17). For bimodulus-material shells, the laminate stiff-
nesses (Aij’Bij’Dij) are, in general, not constant, but depenq upon x and y
through the fiber-direction neutral-surface positions (znx and zny)’ How-
ever, for the present combination of loading and boundary conditions, 2z

nx

and z, ~are both constants, i.e., independent of x and y. Although it is

y
conceptually possible to substitute the solution functions into Equations

(16) and (17) to obtain cubic equations involving z,, and 2,y

tionally much more efficient to satisfy Equations (16) and (17) by iterating

» it is computa-

on znx and zny.

FINITE-ELEMENT FORMULATION

Since an exact closed-form solution to Equation (12) can be obtained
only under special conditions of geometry, edge conditions, loadings, and
lamination, it is desirable to have available a more general method. Here,

we develop a simple, mixed-type, finite-element formulation which has no
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such limitations, except for those implied in the formulation of sheqr-
flexible laminated shell theory.
Let the region R be subdivided into a finite number N of subregions:

finite elements, Re (e=1,2,...,N). Over each element, the generalized

displacements (u.v,w,sx,sy) are interpolated according to

r 1 r 1 S 2
“’}:"1% , "’}”i"i ’ "‘“1?"‘1%
(23)
p 3 P 3
By T Dhiey o By = IV

Here,¢? (a=1,2,3) is the interpolation function corresponding to the i-th
node in the element. It is noted that the inplane displacements, the
normal deflection, and the bending slopes may be approximated by different
sets of interpolation functions. Although this generality is considered
in the formulation presented here, when the element is actually programmed,
we set ¢1=¢2=o3 (r=s=p) for simplicity. Noting that r, s, and p denote
the number of degrees of freedom (DOF) for each variable, the total number
of DOF per element is 2r + s + 2p.

Substituting interpolations of the form (23} for u, v, w, By and sy
into the Galerkin integrals associated with the governing operator equation

(12), we obtain

[ (s - itnioraxdy =0 (24)
Re

3 Now using integration by parts once in order to distribute the differentiation
"gi, , equally among the terms in each expression, we obtain the element equation

LTkt

A F BT R AT T
At L A .
R

(K1 (7}, = {F}e (25)




The elements K:g (as8%1,2,...,5) of the element stiffness matrix and F?
of the generalized force vector are listed in Appendix B.

In the present investigation, cylindrically curved rectangular elements j
of the serendipity family are used, with the same interpolation for all of F
the variables. The resulting stiffness matrices are 20 by 20 for the four-
node element and 40 by 40 for the eight-node element. Reduced integration
[27,28] must be used to evaluate the matrix coefficients in Appendix B.
For example, for the four-node rectangular element, the 1x1 Gauss rule must

be used rather than the standard 2x2 Gauss rule.

NUMERICAL RESULTS

It would be desirable to compare the results obtained by the present

analyses with those given in the literature for special cases. Unfortunately,

however, there is a dearth of solutions of cylindrical panels subjected to

sinusoidally distributed mechanical and thermal loadings. However, in a %
recent closed-form and finite-element study [14] of thermally loaded plates,

good agreement was obtained with results presented by Boley and Weiner [29] €
for isotropic, thin plates. %

As practical examples of orthotropic bimodulus materials, the same

two unidirectional cord-rubber materials as considered in (14,18] are con-

E}}, sidered, namely, aramid-rubber and polyester-rubber. The inplane elastic

} :~“ properties were obtained from experimental results of [2] using the data-
‘g-j reduction procedure presented in [4]. Since the thickness-shear moduli were
: not measured in [2], they were estimated as described in detail in [30].

The elastic properties are 1isted in Table 2.

Unfortunately, the present investigators are unaware of any experimentally
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determined values for the thermal-expansion coefficients of cord-rubber

materials. However, the micromechanics analygis of bimodular action pre-

sented in [13] suggested that the thermal-expansion coefficients (a; and a,)
o of these materials should also depend upon the sign of the fiber-directfon

P strain. Thus, in the numerical calculations presented here, the following

dimensionless relationships are used:
ate$ =05 3 ab/S=1.0 5 absal =0l

Here, superscripts ¢ and t refer to compressive and tensile fiber-direction

strains.

Table 3 shows the effect of the radius-to-thickness ratio (R/h) on

the locations of neutral surfaces and dimensionless deflections for single-

layer and two-layer cross-ply aramid-rubber cylindrical panels under sinu-
soidal mechanical loading by Sanders theory. As the radius-to-thickness

ratio is increased to infinity, the panel can be considered as a plate.

Table 3 also shows the convergence of the dimensionless deflections.
Numerical results of the influence of the aspect ratio on the dimen-
;4:‘f. sionless deflections and neutral-surface locations for single-layer and
two-layer cross-ply, freely supported cylindrical shells constructed of
bimodulus materials and subjected to sinusoida) thermal loading (R/h = 10)

by Sanders theory are shown in Tables 4 and 5, respectively. Again, there

3'r;i is a close agreement between the finite-element and closed-form results.
?‘Eé/ Figure 2 shows the effect of radius-to-thickness ratio and aspect
A

Fjég* ratio (a/b) on the dimensionless deflections and neutral-surface locations
oLy, .

R

bt

;~; for one-layer and two-layer cross-ply, freely supported aramid-rubber

'y

P PR RS
- -»i\ . :

cylindrical shells under sinusoidal thermal loading by Sanders theory.
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Figures 3 and 4 show the influence of aspect ratio and radius-to-
thickness ratio, respectively, on the locations of neutral surfaces for
single-layer, freely supported, aramid-rubber cylindrical shells under
sinusoidal thermal loading by Sanders theory. Similar results are shown T
in Figures 5 and 6 for two-layer cross-ply, freely-supported polyester-
rubber cylindrical shells under sinusoidal thermal loading. As can be
seen, there is only a slight change of neutral-surface locations for

radius-to-thickness ratios greater than 60.

CONCLUDING REMARKS

A finite-element formulation of equations governing layered anisotropic
composite shells subjected to mechanical as well as thermal loading is
presented. The element includes the effect of shear deformation and in-

volves five degree of freedom (three deflections and two rotation functions)

per node. Numerical convergence of linear and quadratic elements is shown,
and results are presented for single-layer and two-layer cylindrically curved
cross-ply panels cubjected to sinusoidal and uniform loadings: thermal,
mechanical, and combined loadings are considered.

To check the finite-element results, a closed-form solution is developed
hereih for cross-ply cylindrically curved panels subjected to sinusoidal
mechanical and/or thermal loadings. The exact solution can be obtained only
under special conditions of geometry, edge conditions, and loadings. How-
ever, the finite-element formulation presented here does not have any limi-
tations except for those implied in the formulation of the governing equations.
The finite-element solutions are found to be in close agreement with the
closed-form solutions for 2 by 2 mesh of quadratic elements in the quarter

shell.




Thus, the finite element developed here is computationally simply
compared to other cylindrical shell elements used previously in the thermal
stress analysis of cylindrical shells.

Extension of the present element to non-linear thermal stress analysis
and to thermal buckling analysis is recommended. In those cases, the

present element should result in substantial savings.
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APPENDIX A
- DERIVATION OF EXPRESSIONS FOR THERMAL FORCES AND MOMENTS

Case I

For Case I, z, > 0 and 2oy © 0 with z,  governing layer 1 (0°) and 2

layer 2 (90°).
2z

T ny
N = I_m("nzz “22* N2z %2220 ‘“r: (Qnz *nz* bz o22)7 &2
ny

nx ' . rh/2 .
+ Io Q321 2121 * hazy 227 "“L (@117 3111+ Q219 09T @2
nx

Let

Q122 %122* Q222 2222) = B122 » (iniz *niz* haiz 12! = Bz

Q121 %121 * Q227 9221) * 8121 » (Qqpqy a0y * Qzpy 9g7y) = Byyq s ete.

Then,
NI * [8122 To(zny + h/2) + B112 To(o"zny) * 82 To(znx"o)
+ Byqq To(W2-2,) + 8)5p(Ty/2H) (2] - h¥/4)
+ 8y3p(Ty/20)(0- 22) + 312,(T,/zh)(z:x-6)
+ gj‘](T1/2h)(h’/4-z:x)]sin ax sin gy
M [“122;’111’(%"’2’ * (8121 - 8111) Lozng * (By=8y42) T2,
* (8177 - 81220 (TyN/B) + (815 - 8399 )(Ty2},/2h)

Similarly,

ny

(A-1)

(A-2)

(A-3)
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T
Ny = (8309 * 8217)(Tgh/2) + (827~ Byq) toZny * (8222~ 8212) ToZny

+ (877~ B222) (T{/8) + (891 = 827142 /20) + (8590~ 8)

(TIz:yIZh)]sin ax sin gy (A-4)
Now,
7 (M2 0 Znx h/2
"x = ] 6122 Tz dz + J ﬂ]]z Tz dz + I 3121 Tz dz + 8.‘1] Tz dz
-h/2 Zny 90 2

nx

[(8477 = By22) (Th%/8) + (815 - 31]1)(f°z:x/2) + (8192~ 8112)(To2y/2)

+ (8129 * 817 (TyH/28) + (817 = 877)(Tyzp, /30)

+ (Bypp" am)(r]zr’w/amsin ax sin 8y (A-5)
Similarly,
My = [(8yy - 820 (Toh™/8) + (B - 827))(To7,/2) + (B30~ 817)(ToZp, /2)

+ (8y9p + Byjq)(Tyh?/24) + (897 - 32]])(1’12,’,,;/3!1)

+ (3222- 3212)(le:y/3h)]s'ln ax cos 8y (A-6)

Using the above equations in conjunction with equations (12) and (18), we
obtain the following:

;
Ry, x = ol(810 + 817 (Tgh/2) + (8157 - 8137 20, + (8129 = 81520 T2y

+ (8177 = 8122)(Ty1/8) + 8y - 8y77)(Ty25,/20)

+ (8150~ By72)(Tyzp,/2M)] (A7)
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Rty = 80(Bygp + 8271} (Tgh/2) + (B9 - 8511 ToZne + (8220~ 8212072y
+ (32]] - 5222)(71"/8) + (322] - 32]])(T]Z:x/2h)

+ (3222 - 32]2)(1"1;/2“)] (A‘B)

RI.X = u[(B"‘ - ﬂ]n)(rohz/a) + (3}2] - B]l])(T;Z:x/Z) + (3]22' 3-"2)
(Tozny/2) + (8129 + 8171 )(T{1%/28) + (87 - 8197} (Ty20,/30)

n;,y * B[(an - B222)(T0hz/8) + (5221 - BZ]])(Toz:xlz) + (3222 - 32]2)(T°z:y]2)

+ (899 * 821 (T1h%/28) + (859, = 85)) (127, /30) + (855 - 85,) (Ty25 /30)]

(A-10)
In a similar way, one can obtain the expressions for the above-mentioned

quantities for the remaining seven cases as follows:

Case I1I (znx>°' zny>0)

Ny x = al(812 * 8177)(Th/2) + (815 - 819 (Ty2,,)

+ (3]" - 3122)(T]h/8) + (312] - B]n)(flz:x/z"l)]

T
Ry ,y = (8222 + 8217 )(Tgh/2) + (Bgp; - 8577) T2y )

+ (an - 8222)(T]h/8) + (522] - 82]1)(712:x/2h)] (A1)

Wy = allByyy - 8122)(TGh2/8) + (815 = 8377)(Te22,/2)

+ (31-22 + B]")(T]hz/z‘) + (3121 - 311])(712"“/3")]

AT, = 808y, - 822)Th%/8) + (85 - By ) (23 /2)

+ (3222 - 32]1)(T]h2/24) + (322] - 32")(112'3“/3")]




Case III (znx<o, z“y>0)

Wyx = alleyzp + 8130 (Tgh/2) + (835 - 8130 (T2,
* (8122~ B112) (Tozny) + (117 - 8122} (Ty/8)

+ (812 = 1)) (TyZpy/20) + (8159 83} (Ty 2,/ 20)]

ﬁT.y = 3[(3222 + an)(rohlz) + (322] - 82“)(TOZM)

y
+ (Bgg = 8212)(To2p,) + (Byyq - Byp0) (T1N/8)

+ (522] - an)(T]Z:YIZh) + (3222- 8212)(T12121X/2h)] w12

nI x 0[(5111 - 8122)(10'.2/8) + (3]2] - 3]]1)(T°Z:y/2)
+ (3122‘ 9112)(Toz:x/2) + (3122 + B]")(T‘hzlﬂu)

+ (8191 - 811 (TyZp/30) + (8192 - B112) (TZax/30)]

(857 - 8229) (Toh"/8) + (837 = 877} (T2 /2)

+ (8222" BZ]ZNTOZ:XIZ) + (8222 + 82]])(T1h2/24)

+ (851 - 8217) (T2, /30) + (855 - 85} (T2, /30)]

T
Ry ™

Case [V (znx<0, zny<0)

Ky, = al(Bypp + 8177 )(Tgh/2) + (8159 = 81 7)(T2py)

X

Ty ™ Bl(85p *+ 851)(T0/2) + (855~ 8557)(T,2,,)

y

+ (52" - 3222)(113‘/8) + (3222 - 3221)(?11'2"/2”] (A-13)
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By = ol(Byyy = 80 (Th2/8) + (8,5 - 817 )(T,25,/2)

+ (3]22 + 3]]])(T]hz/24) + (3122'3.12])(1‘]2:’/3")1
T ‘ i ‘
Ry, = 8L(8y1 -~ 8590) (Fh7/8) + (B0 - 850 N(T 20, /2)

+ (8399 + 8211)(Ty1%/28) + (855 - 855)) (1127 /30)]
For neutral surface going out of plane,

Case V (znx>o.s, zny<-o.5)

AT = allBypq + 8172)(T,/2) + (815 = 8135)(11/8)]
7,y = 80085y * 852)(1o/2) + (83 = 8,)(Ty/8)]
Mo x = al(B120 = 81720 (To/8) + (81 + 8yp)(Ty/24)]
R,y = 80850 = 812} (To/8) + (Bpgy + 87,)(T1/20)]

Case VI (znx<-0.5. z_>0.5)

ny
By, = all8yg) + 8132)(To/2) + (815 - 817,)(T/8)]
).y = 8008501 + 8215)(T5/2) + (B = 85,)(Ty/8)]
AT = al(8y5) - 81120 (To/8) + By + 81,)(T1/24)]
W), = 8008501 - 85)(To/8) + (Bepy + 8y, (T1/28)]

Case VII (znx>°‘5’ zny>0.5)

= alleyyg + 8132)(To/2) + (8499 - 87)(Ty/8)]
= 5[(3211 + 3212)(T°/2) + (Szn - 3212)(11/8)]
= c[(ﬂjn - 3]]2)(10/8) + (31“ + 8112)(71/24)]

.
Rx.x
T
NY-.Y
T
ﬁx.x
Ry,y = 80807 = 8202)(T/8) + (85 + 85,)(Ty/20)]

(A-13 cont.)

(A-14)

(A-15)

(A-16)




Case VIII (znx<-0.5. zny<-0.5)

N:.X = al(gyy * 3.122)“0/2) + (512] = 3]22)”]/8)]

T

Ry.y = ollezy * 8222)(Ty/2) + (8551~ By22)(T1/8)] (A-17) . i
AL, = al(812) - 8120 (To/8) + (813 + By (Ty/28)] |
W), = 8l(ay) = 8500)(To/8) + (g *+ 82p) (1,/28)]

For a single layer, change 8,5, t0 B8y4y: 8922 to 8,5)» By)2 0 Byy and




The elements of the stiffness-matrix appearing in Equation (25) are:
":; = ApyGh5 + (Agg - tzsss"' E30g6)6);
};— « A8+ (A 066)6"3'
K3 = (B Rms s KM = ByH]j + (Bg = 7 CpDgg)M]
i3 = By * (Bgg - 7 U6y
G2 = AygBly + (Rgg + CBgg + 7 7 (Pes 55 + £35446%;
K53 = (hpp/RME 5 K5 = (Bgg + 7 U0eg)y) * BiHyY
Kzs' = (866 * 7 Uy DggHi3 + BagHls = 154415
K3 = SgsSi; * SgaShy + (Agp/R)S()
Kag = SssRig *+ (Bip/RIRY] 5 Kag = SyRY5 + (Bpp/RIRY]
Kaa = D733 * DesTis * D663 /v SssTij * Kas = D1aTiy * DggT3y
Kes = DggT1y * DaoTdy * SaaTis
The generalized-force elements appearing in Equation (25) are:
F} I (N] , + NT - 3 LM y)¢1 dx dy
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APPENDIX B
LISTING OF COEFFICIENTS OF STIFFNESS MATRIX
AND FORCE VECTOR FOR FINITE-ELEMENT FORMULATION

. T el
L; (N2.y * "6 X 2 CMg,x)¢q dx dy
(P -N /R)¢ dx dy
Lz /R §

- T ] - T T 4.3
IR * Mg )4,1 dx dy ; Fj L! (Mz’y + Ms,x)"i dx dy

(B-1)

(8-2)




where

LR i 505.n dx dy (1,§=1:2,5...51) t;
1
!
in , s ]
H; IR § E¢J o 9% dy (i21,2,...,r 5 §51,2,....t)
x| e g0, O ¢ (#1200 0r 5 321:2000008) 5
.R ‘lgan y LR I ) tJ shpsccs
E
En ol s
> {n ot B Y (1,32122,.. 5] (8-3)
En oo 2 ,= - ?
RiJ J‘R ¢i:5¢jaf\ X dy ('l ‘,2....,5 3 1,2,_,.’t) .1
e 4
gn . 3 .3 o
T‘J f'R ‘ti,i(’j,n dx dy (i,J ],2,...,5)
e .
(E:ﬂ’osx’Y)

and G§§ = G§j, etc. In the special case in which ¢: 2 ¢§ = ¢:, all of the

matrices in Equation (B-3) coincide.
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Figure 1.

Shell geometry
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Figure 2. Transverse deflection vs. aspect ratio and radius-to-thickness
ratio for single-layer and two-layer cross-ply cylindrical
panels under sinusoidal thermal loading by Sanders theory
(Material: aramid-rubber) .
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Figure 3. Neutral-surface location vs. aspect ratio for single-layer
cylindrical shells under sinusoidal thermal loading by
Sanders theory (Material: aramid-rubber, R/h=10)
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Figure 4. Neutral-surface location vs. radius-to-thickness ratio

) for single-layer cylindrical shell under sinusoidal
thermal loading by Sanders theory (Material:aramid- ‘
rubber, a/b=1.0), 1
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Figure 5. NeutraI-surgace location vs. aspect ratio for two-layer

cross-p1{(0 /90°)cylindr1cal shells under sinusoidal
thermal loading by Sanders theory (Material: polyester-
rubber, R/h=10).
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;i Figure 6. Neutral-surface 1ocation vs. radius-to-thickness ratio

for two-Iayer(O°/90 ) cylindrical shells under sinusoidal
thermal loading by Sanders theory (Material:polyester-
rubber, a/b=1.0).




Table 1. List of Shell-Theory Tracers and Their Values .

Theory (Thin-Shell Theory Generalized C ¢
. to Shear-Flexible Theory 1 2

Sanders' 1 1

Love's first approximation

and Loo's 1 0

Morley's and Donnell's 0 0

Table 2. Elastic Properties for Two Tire-Cord/Rubber, Unidirectional, Bimddulus
Composite Materials® '

M

. . Aramid-Rubber Polyester-Rubber
Property and Units kel ks2 kel k=2

| Longitudinal Young's modulus, GPa 3.8  0.0120 0.617 0.0369
g%‘f Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106
X Major Poisson's ratio, d‘lms'lonlessb 0.416 0.205 0.475 0.185

Longitudinal-transverse shear moduius, GPa® 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

":;b::-zdinctim tension is denoted by k=1, and fiber-direction compression
bltliziissmd that the minor Poisson's ratio is given by the reciprocal
relation.

91t 1s assumed that the longitudinal-thickness shear modulus is equal to this
< f-, m. '
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Table 3. Effect of the radius-to-thickness ratio (R/h) on the
- locations of neutral surfaces and deflections for
single- and two-layer,cross-ply,aramid-rubber cylindrical
panels under sinusoidal loading by the Sander§ theory
(T, = To " 0, a/b =1, b/h = 10, material I).
R/h Layers Source w Z, 4 y
R/h> = 1 CF 0.02094 0.44205 -0.16185
FEM 0.02093 0.44205 -0.1616
(plate) 2 CF 0.01982  0.438%  -0.03418
FEM 0.01981 0.4384 -0.03416
1 CF 0.020246 0.4408 -0.1840
100 FEM 0.020234 0.4408 -0.1838
2 CF 0.01892 0.43666 -0.036686
FEM 0.01891 0.43661 -0.03666
1 CF 0.01943 0.4396 -0.2065
50 FEM 0.01943 0.4396 -0.2063
2 CF 0.01793 0.4350 -0.03909
FEM 0.01793 0.4350 -0.03905
1 CF 0.01900 0.4390 -0.2179
40 . FEM 0.01899 0.43%0 -0.2177
2 CF 0.01742 0.434 -0.04027
FEM 0.01741 0.4341 -0.04022
1 CF 0.01663 0.4361 -0.2769
20 FEM 0.01663  0.4361  -0.2767
2 CF 0.01478 0.4300 -0.04600
FEM 0.01478 0.4300 -0.04593
1 CF 0.01206 0.4305 -0.4127
10 FEM 0.01206  0.4305  -0.4127
2 CF 0.01019 0.4221 -0.05766
FEM 0.01019 0.4221 -0.08752
] CF 0.006223 0.4200 -0.8655
3 FEM 0.006223  0.4200  -0.8655
2 CF 0.004975 0.4070 -0.09156
FEM 0.004972 0.4070 -0.09057
TaaNEZR oz .2 /o, 2, =z, /h




Table 4.

Neutral-surface positions and dimensionless deflections

for cylindrical panels of single-layer (0°) aramid-rubber
and polyester-rubber under sinusoidal thermal loading, as

; o ATRE
| S T ‘»’b &3y

g:t:rﬂa:d?:y.tg%?i;?:egt) .Qethods. (R/h = 10.0,
Aspect 4
Ratio
a/b C.F. F.E. C.F. F.E. C.F. F.E.
Aramid-Rubber
0.5 0.03016 0.03021 0.02250 0.02247 | -0.07431 -0.07308
0.75 0.06767 0.06772 0.02295 0.02295 | -0.07458  -0.07400
1.0 0.1190 0.11%0 0.021565  0.02158 | -0.06347  -0.06332
1.25 0.1821 0.1821 0.01772 0.01768 | -0.05191 -0.05157
1.5 0.2545 0.2546 0.01124 0.01121 -0.04228  -0.04204
1.75 0.33%1 0.3330 0.002360  0.02314 | -0.03473  -0.03454
2.0 0.41505 0.4149 -0.0085576 0.08476 | -0.02892  -0.02876
Polyester-Rubber
0.5 0.04083 0.04088 0.09004 0.08958 | -0.20M -0.1978
0.75 0.08952 0.08955 0.08481 0.08463 | -0.1574 -0.1560
1.0 0.1527 0.1527 0.07445 0.07423 | -0.1112 -0.1109
1.25 0.2263 0.2263 0.06020 0.06919 | -0.07815  -0.07779
1.5 0.3060 0.3059 0.04302 0.04300 | -0.05596  -0.05573
1.75 0.3881 0.3880 0.02370 0.02364 | -0.04104  -0.04088
2.0 0.4695 0.4693 0.002851 . 0.002742 | -0.03082  -0.03069
*- Wh

ws s =2 . s
m? Zx nx/h Zy zny/h

;
> :
Ighor o

LY .r‘ AR
h R T




Table 5. Neutral-surface positions and dimensionless deflections
for cylindrical panel of two-layer (0°/90°) aramid-rubber
and polyester-rubber under sinusoidal thermal loading.

t (Rfh = 10.0, T, = 1.0, To = 0.0, Py ™ 0).* .
Aspect w z -Ii z .:
Ratio X : 24
a/b C.F. F.E. C.F. F.E. C.F. F.E. J
Aramid-Rubber
1.0 0.1212 0.1218 0.05189  0.05335 | -0.05085 ~0.05133
1.28 0.1783 0.1787 0.03656  0.03763 | -0.04511  -0.04644
1.5 0.2408 0.2410 0.02050  0.02084 | -0.04052 -0.04209 1
1.75 0.3064 0.3065 0.003910 0.004119| -0.03682 -0.03694
2.0 0.3726 0.3726 -0.01397 -0.001406} -0.03387 -0.03493 ]

Polyester-Rubber

1.0 0.1829 0.1849 0.1486 0.1510 | -0.09623 -0.1006
1.25 0.23745  0.2399 0.1066 0.1100 | -0.08727 -0.08823
1.5 0.2882 0.2905 0.06572  0.06857 | -0.08188 -0.08287
1.75 0.33435  0.3363 0.02652  0.02813 | -0.07857 -0.08074
i 2.0 0.37525  0.3769 0.01112  -0.01144 | -0.07649 -0.07866
i * -
K - h = =
wa Ah Z, = zo,/h zy zny/h
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shells, moderately thick shells, shell theory, thermal expansion, thermal

stresses, thermoelasticity, transverse shear deformation.
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Closed-form and finite-element solutions are presented for the thermoeiastic
behavior of laminated -composite shells. The material of each layer is
assumed to be thermoelastically orthotropic and bimodular, i.e., having dif-
ferent properties depending upon whether the fiber-direction normal strain is
tensile or compressive. The formulations are based on the thermoelastic i
generalization of Dong and Tso's laminated shell theory, which inciudes

thickness shear deformations. The finite element used here has five
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degrees of freedom per node (three displacements and two bending slopes).
Numerical results are presented for defléections and the positions of the
neutral surfaces associated with bending along both coordinate directions.

The closed-form and finite-element results are found to be in good agreement
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